Internal function called by extract_summary_functions()
to calculate a univariate spatial summary function for a single image.
Usage
univariate(
mximg,
markvar,
mark1,
mark2,
r_vec,
func = c(Kest, Lest, Gest),
edge_correction,
empirical_CSR = FALSE,
permutations = 1000
)
Arguments
- mximg
Dataframe of cell-level multiplex imaging data for a single image. Should have variables
x
andy
to denote x and y spatial locations of each cell.- markvar
The name of the variable that denotes cell type(s) of interest. Character.
- mark1
dummy filler, unused
- mark2
dummy filler, unused
- r_vec
Numeric vector of radii over which to evaluate spatial summary functions. Must begin at 0.
- func
Spatial summary function to calculate. Options are c(Kest, Lest, Gest) which denote Ripley's K, Besag's L, and nearest neighbor G function, respectively.
- edge_correction
Character string that denotes the edge correction method for spatial summary function. For Kest and Lest choose one of c("border", "isotropic", "Ripley", "translate", "none"). For Gest choose one of c("rs", "km", "han")
- empirical_CSR
logical to indicate whether to use the permutations to identify the sample-specific complete spatial randomness (CSR) estimation.
- permutations
integer for the number of permtuations to use if empirical_CSR is
TRUE
and exact CSR not calculable
Value
A data.frame
containing:
- r
the radius of values over which the spatial summary function is evaluated
- sumfun
the values of the spatial summary function
- csr
the values of the spatial summary function under complete spatial randomness
- fundiff
sumfun - csr, positive values indicate clustering and negative values repulsion
References
Creed, J. H., Wilson, C. M., Soupir, A. C., Colin-Leitzinger, C. M., Kimmel, G. J., Ospina, O. E., Chakiryan, N. H., Markowitz, J., Peres, L. C., Coghill, A., & Fridley, B. L. (2021). spatialTIME and iTIME: R package and Shiny application for visualization and analysis of immunofluorescence data. Bioinformatics (Oxford, England), 37(23), 4584–4586. https://doi.org/10.1093/bioinformatics/btab757