This is a wrapper for the function mfpca.face
from the refund
package. EXPAND
Usage
run_mfpca(
mxFDAobject,
metric = "uni k",
r = "r",
value = "fundiff",
knots = NULL,
lightweight = FALSE,
...
)
Arguments
- mxFDAobject
object of class
mxFDA
created bymake_mxfda()
with metrics derived withextract_summary_functions()
- metric
name of calculated spatial metric to use
- r
Character string, the name of the variable that identifies the function domain (usually a radius for spatial summary functions). Default is "r".
- value
Character string, the name of the variable that identifies the spatial summary function values. Default is "fundiff".
- knots
Number of knots for defining spline basis.Defaults to the number of measurements per function divided by 2.
- lightweight
Default is FALSE. If TRUE, removes Y and Yhat from returned mFPCA object. A good option to select for large datasets.
- ...
Optional other arguments to be passed to
mfpca.face
Value
A mxFDA
object with the functional_mpca
slot for the respective spatial summary function containing:
- mxfundata
The original dataframe of spatial summary functions, with scores from FPCA appended for downstream modeling
- fpc_object
A list of class "fpca" with elements described in the documentation for
refund::fpca.face
References
Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-014-9485-x.
Author
unknown first.last@domain.extension
Julia Wrobel julia.wrobel@emory.edu
Alex Soupir alex.soupir@moffitt.org
Examples
#load data
data(lung_FDA)
#run mixed fpca
lung_FDA = run_mfpca(lung_FDA, metric = 'uni g')
#> 207 sample have >= 4 values for FPCA; removing 0 samples
#> Joining with `by = join_by(patient_id)`