Summarise spatial data in mxFDA object
Source:R/extract_spatial_summary.R
extract_spatial_summary.Rd
Summarise spatial data in mxFDA object
Arguments
- mxFDAobject
object of class
mxFDA
- columns
character vector for column heading for cells to summarise
- grouping_columns
character vector of other columns to use as grouping, such as region classification column
Value
data frame with percent of total points per spatial sample columns
.
If multiple levels are present in columns
columns, multiple output columns will be provided.
Details
Currently this function is experimental as it only handles data that has text in the columns. Eventually, will be able to handle any data inputs such as those from HALO where cells are designated as positive (1) or negative (0) for a cell phenotypes.
Author
Alex Soupir alex.soupir@moffitt.org
Examples
#load data
data(lung_df)
#create data frames for `mxFDA` object
clinical = lung_df %>%
dplyr::select(image_id, patient_id, patientImage_id, gender,
age, survival_days, survival_status, stage) %>%
dplyr::distinct()
#make small, just need to make sure it runs
spatial = lung_df %>%
dplyr::select(-image_id, -gender, -age, -survival_days, -survival_status, -stage) %>%
dplyr::filter(patientImage_id %in% clinical$patientImage_id[1:10])
#create `mxFDA` object
mxFDAobject = make_mxfda(metadata = clinical,
spatial = spatial,
subject_key = "patient_id",
sample_key = "patientImage_id")
#get markers
markers = colnames(mxFDAobject@Spatial) %>%
grep("pheno", ., value = TRUE)
#extract summary
df = extract_spatial_summary(mxFDAobject, markers)