Internal function called by extract_summary_functions
to calculate a bivariate spatial summary function for a single image.
Usage
bivariate(
mximg,
markvar,
mark1,
mark2,
r_vec,
func = c(Kcross, Lcross, Gcross, entropy),
edge_correction,
empirical_CSR = FALSE,
permutations = 1000
)
Arguments
- mximg
Dataframe of cell-level multiplex imaging data for a single image. Should have variables
x
andy
to denote x and y spatial locations of each cell.- markvar
The name of the variable that denotes cell type(s) of interest. Character.
- mark1
Character string that denotes first cell type of interest.
- mark2
Character string that denotes second cell type of interest.
- r_vec
Numeric vector of radii over which to evaluate spatial summary functions. Must begin at 0.
- func
Spatial summary function to calculate. Options are c(Kcross, Lcross, Gcross) which denote Ripley's K, Besag's L, and nearest neighbor G function, respectively, or entropy from Vu et al, 2023.
- edge_correction
Character string that denotes the edge correction method for spatial summary function. For Kcross and Lcross choose one of c("border", "isotropic", "Ripley", "translate", "none"). For Gcross choose one of c("rs", "km", "han")
- empirical_CSR
logical to indicate whether to use the permutations to identify the sample-specific complete spatial randomness (CSR) estimation.
- permutations
integer for the number of permtuations to use if empirical_CSR is
TRUE
and exact CSR not calculable
Value
A data.frame
containing:
- r
the radius of values over which the spatial summary function is evaluated
- sumfun
the values of the spatial summary function
- csr
the values of the spatial summary function under complete spatial randomness
- fundiff
sumfun - csr, positive values indicate clustering and negative values repulsion
References
Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-014-9485-x.
Vu, T., Seal, S., Ghosh, T., Ahmadian, M., Wrobel, J., & Ghosh, D. (2023). FunSpace: A functional and spatial analytic approach to cell imaging data using entropy measures. PLOS Computational Biology, 19(9), e1011490.
Creed, J. H., Wilson, C. M., Soupir, A. C., Colin-Leitzinger, C. M., Kimmel, G. J., Ospina, O. E., Chakiryan, N. H., Markowitz, J., Peres, L. C., Coghill, A., & Fridley, B. L. (2021). spatialTIME and iTIME: R package and Shiny application for visualization and analysis of immunofluorescence data. Bioinformatics (Oxford, England), 37(23), 4584–4586. https://doi.org/10.1093/bioinformatics/btab757