
Project organization

Hitchhiker’s Guide to Reproducible Research
Julia Wrobel and David Benkeser

 Course Website

https://bit.ly/sismid_hitchhikers

Basic principles

Put everything in one version-controlled directory.

Develop your own system.

Be consistent, but look for ways to improve.

naming conventions, file structure

Raw data are sacred. Keep them separate from everything else.

Separate code and data.

Use meaningful file names.

Use YYYY-MM-DD date formatting.

No absolute paths.

2 / 42

What to organize?

It is probably useful to have a system for organizing:

data analysis projects;

first-author papers;

talks.

The systems should adhere to the same general principles, but
different requirements may necessitate different structures.

Think about organization of a project from the outset!

3 / 42

Collaborative projects

Collaborative projects present a greater challenge.

Not everyone is comfortable with LaTeX or git or ...

I don't have a great solution for this.

Google drive/Word online helps to a certain extent, but you lose in
other areas (reference management, math typesetting)

Overleaf has gotten much better for LaTeX

Some advice:

Address organization from the outset.

Ideally, bring people on board to your (version controlled,
reproducible) system.

Keep open lines of communication (especially if using GitHub)

4 / 42

http://overleaf.com/

Example data analysis project (Julia)

YYYY_MM_PI_topic/
 data/
 data/raw_data.csv
 data/tidied_data.csv
 analysis/
 analysis/exploratory_data_analysis.Rmd
 analysis/modeling.Rmd
 analysis/manuscript_figures.Rmd
 analysis/report.Rmd
 source/
 source/clean_raw_data.R
 source/modeling_functions.R
 results/
 literature/
 README.md

5 / 42

Example data analysis project, cont'd (Julia)

I typically have other ancillary files in my root directory as well. These
are files I don't (often) modify but are important for workflow or
reproducibility:

YYYY_MM_PI_topic/
 YYYY_MM_PI_topic.Rproj
 .git
 .gitignore

6 / 42

Example data analysis project (David)

analysis/
 raw_data/
 data/
 R/
 R/00_clean_data.R
 R/01_fit_models.R
 R/02_make_figures.R
 R/03_summarize_results.R
 R/04_report.Rmd
 figs/
 sandbox/
 sandbox/exploratory.R
 ref_papers/
 Makefile
 README.md
 renv

7 / 42

Example paper organization

paper/
 analysis/
 analysis/README.md
 analysis/00_clean_data.R
 analysis/01_fit_models.R
 analysis/02_make_figures.R
 analysis/sandbox
 sim/
 sim/README.md
 sim/helper_functions.R
 sim/sim_script.R
 sim/run_sim_script.sh
 figs/
 notes/
 submitted/
 revision/
 final/

README.md
8 / 42

Organizing data

Raw data are sacred... but may be a mess.

You'll be surprised (and disheartened) by how many color-coded
excel sheets you'll get in your life.

Tempting to edit raw data by hand. Don't!

Everything scripted!

Use meta-data files to describe raw and cleaned data.

structure as data (e.g., .csv so easy to read)

9 / 42

Organizing data

Hadley Wickham defined the notion of tidy data.

Each variable forms a column.

Each observation forms a row.

Each observational unit forms a table.

ptid day age drug out

1 1 28 0 0

1 2 28 0 1

2 1 65 0 0

2 2 65 1 1

3 1 34 0 0

3 2 34 - 1

10 / 42

https://doi.org/10.18637/jss.v059.i10

Exploring data

One of the first things we'll often do is open the data and start poking
around.

Could be informal, "getting to know you."

Could be more formal, "see if anything looks interesting."

This is often done in an ad-hoc way:

entering commands directly into R;

making and saving plots "by hand";

etc...

Slow down and document.

Your future self will thank you!

11 / 42

Exploring data

Write out a set of comments describing what you are try to
accomplish and fill in code from there.

I do this for every coding project.

Data analysis, methods coding, package development

Leave a search-able comment tag by code to return to later

I use e.g., # TO DO: add math expression to labels; make
colors prettier.

Sets "the bones" of a formal analysis in place while allowing for some
creative flow.

12 / 42

Exploring data

Other helpful ideas for formalizing exploratory data analysis:

Informal .Rmd documents.

easy way to organize code/comments into readable format

.Rhistory files

all the commands used in an R session

save intermediate objects and workspaces

and document what they contain!

knitr::spin

writing .R scripts with rendered-able comments

13 / 42

Automated project initiation using projectr

The projectr package sets my preferred directory structure for a
new project.

Borrowed heavily from jeff-goldsmith/projectr.

devtools::install_github("julia-wrobel/projectr")

projectr::proj_start(proj_dir = "~/projects/2024/202407_PERSON_PROJECT",
 data_dir = "~/Data/202407_data")

proj_dir: where on your computer you want the project to live

~Documents/projects/2024/ is where I store new projects

Whatever you decide, be consistent!

data_dir: where the data to live, if not within your project folder

Sets up a symbolic link from the project directory to this folder

14 / 42

Symbolic links

There are great reasons NOT to put your raw data in the project folder

iOS uploads many folders automatically to the cloud

if you want to put the project on GitHub, you might want to
exclude the data

maybe data is stored on OneDrive/Box/AWS and you don't want to
download a local copy

15 / 42

Setting up a symbolic link in the terminal

Pseudo code for setting up a symbolic link:

ln -s /path/to/target /path/to/symlink

16 / 42

Built-in projectr Rmd template

In Rstudio, click File > New File > Rmarkdown

17 / 42

.Rproj files

You may have noticed a file with the extension .Rproj in the
productTesting folder

These are called R projects

projectr::proj_start() automatically sets up an .Rproj.

I'm going to try to convince you that these are the best.

18 / 42

Benefits of using R projects

Project organization:

Relative file paths: ensures file paths are relative to the project
directory, making scripts portable and easier to share.

Separate workspaces: prevents conflicts between variables and
packages across different projects.

Reproducibility

Can hand off entire directory to someone else and have them
rerun your analysis

Works great with the here package

Double clicking the 202405_sarah_productTesting.Rproj opens
up an R Studio session and automatically sets your working directory
to the 202405_sarah_productTesting folder.

19 / 42

Example 1

We will walk through the following tasks together. We will be using this
folder for the rest of the course so please set up your own folder as
we go, and ask questions if you get lost!

1. Use projectr::proj_start() to initiate a new project called
20240722_sismid_repro. Set up a directory in a separate
location using the argument data_dir.

2. Download the data download script and save it in the source
folder of your new project directory as 01_data_download.R.

3. Make an Rmarkdown document that knits to html called
final_report.Rmd and put it in the analysis folder of your
project directory.

20 / 42

file:///Users/JWROBE8/Library/Mobile%20Documents/com~apple~CloudDocs/Documents/websites/reproducible_research/slides/scripts/01_data_download.R

Example 1 cont'd

The 01_data_download.R script should look like this:

library("RSocrata")
library(tidyverse)

download longitudinal Covid WW concentration data from API
covid <- read.socrata(
 "https://data.cdc.gov/resource/g653-rqe2.json",
 app_token = Sys.getenv("TOKEN"),
 email = Sys.getenv("EMAIL"),
 password = Sys.getenv("PASSWORD")
) %>%
 mutate(date_downloaded = Sys.Date())

download cross-sectional Covid WW concentration data from API, which w
counties <- read.socrata(
 "https://data.cdc.gov/resource/2ew6-ywp6.json",
 app_token = Sys.getenv("TOKEN"),
 email = Sys.getenv("EMAIL"),
 password = Sys.getenv("PASSWORD")
)

21 / 42

.Renviron files

In the previous slide you may have noticed code you may not be
familiar with:

counties <- read.socrata(
 "https://data.cdc.gov/resource/2ew6-ywp6.json",
 app_token = Sys.getenv("TOKEN"),
 email = Sys.getenv("EMAIL"),
 password = Sys.getenv("PASSWORD")
)

.Renviron files set environment variables in R that you might not want
to hard code into your scripts (e.g. API keys, passwords).

Store in root directory of your project

Syntax is variable_name = "variable value", e.g. TOKEN =
"12345abc".

Access this variable using Sys.getenv("TOKEN").

22 / 42

.gitignore files

A .gitignore file in Git is used to specify which files and directories
should be ignored by Git when you make changes to a repository. This
helps prevent unnecessary or sensitive files from being tracked and
committed.

projectr::proj_start() automatically creates a .gitignore
file and puts it in your root directory

ALWAYS put .Renviron in the .gitignore file if you want your
API token and password to stay private!

David will go over .gitignore files in more detail later when he talks
about git and GitHub.

23 / 42

Try it!

Let's walk through Example 2, which adds an .Renviron file.

24 / 42

The here package

No absolute paths.

Absolute paths are the enemy of project reproducibility.

For R projects, the here package provides a simple way to use
relative file paths.

Read Jenny Bryan and James Hester's chapter on project-
oriented work-flows.

The use of here is simple and best illustrated by example.

25 / 42

https://here.r-lib.org/
https://rstats.wtf/project-oriented-workflow.html

The here package

Consider this simple project structure.

my_project/
 my_project.Rproj
 data/
 my_data.csv
 output/
 R/
 R/my_analysis.R
 Rmd/
 Rmd/my_report.Rmd

Here, the folder my_project is the root directory.

Where .Rproj lives

All file paths should be relative to my_project!

26 / 42

The here package

Makes it easy to load data using a relative file path that works across
different operating systems:

library(here)
relative path using here()
here_path = here("data", "file_i_want.csv")
my_data = read.csv(here_path)

In contrast to:

absolute path
ugly_path = "/Users/JWROB/projects/my_project/data/file_i_want.csv"
my_data = read.csv(ugly_path)

In contrast to:

relative path using NOT using here()
relative_path = "./data/file_i_want.csv"
my_data = read.csv(relative_path)

27 / 42

The here package

here works, regardless of where the associated source file lives inside
your project

If you have an .Rproj file in your root directory of your project,
here will set the location of the .Rproj to be the top-level
directory

This is the behavior we want!

These paths will “just work” during interactive development,
without incessant fiddling with the working directory of your IDE’s
R process.

I am oversimplifying the heuristics, feel free to read more.

28 / 42

https://github.com/jennybc/here_here?tab=readme-ov-file

The here package

What if I want to load data in a document that lives in a subfolder
such as my_project/analysis/code.Rmd?

Doesn't matter! You can use the same code within the .Rmd
document to load the data

library(here)
path_to_data = here("data", "file_i_want.csv")
my_data = read.csv(path_to_data)

What if my data I want to access is nested in a subfolder of data, such
as my_project\data\raw_data\raw_file.csv?

library(here)
path_to_data = here("data", "raw_data", "raw_file.csv")
my_data = read.csv(path_to_data)

29 / 42

The here package

If for some reason you don't use R projects (even though you should),
you can still benefit from the here package.

Each R script or Rmd report, should contain a call to
here::i_am('path/to/this/file') at the top.

path/to/this/file should be replaced with the path relative to
the project's root directory.

here::i_am means use function i_am from here package.

For example, the file R/my_analysis.R might look like this.

include at top of script
here::i_am('R/my_analysis.R')

now add all your great R code...

30 / 42

Starting a new analysis

Once I've received data and decided to start an analysis, I'll typically
follow these steps first:

1. Set up a new project directory using projectr::proj_start()
2. Open and do very basic exploration of the raw data

How many rows and columns do I have?

Is the data in the format I need for analysis?

3. Make sure I understand the columns in my data.

If a data dictionary doesn't exist, I create one

4. Make a data cleaning file that reads in the raw data and outputs a
tidied dataset

Typically reduces data to only information necessary for the
planned analysis

31 / 42

Analysis of Covid WW concentration data

We are interesting in analyzing wastewater concentration of SARS-
CoV-2 over time at the county level. We will start with only counties in
Georgia.

Longitudinal data contains concentrations over time, and cross-
sectional data contains information about county each data
collection site is located in.

We will need to merge these two datasets

We also want to subset to collection sites in Georgia only

32 / 42

Data analysis

Using our cleaned data, we will calculate the median and interquartile
range of the WW SARS-CoV-2 concentration by county.

library(tidyverse)

covid %>%
 group_by(county) %>%
 summarize(median = median(concentration),
 q25 = quantile(concentration, probs = .25),
 q75 = quantile(concentration, probs = .75),
 population_served = median(population_served)) %>%
 ungroup() %>%
 arrange(median)

33 / 42

Data visualization

Using our cleaned data, we will visualize the concentration by county
and over time.

34 / 42

Example 3

We will walk through this together as well, using the
20240722_sismid_repro project we set up already.

1. Using the projectr template, make an Rmarkdown document
called exploratory_analysis.Rmd and put it in the analysis
folder of your project directory. Load and explore the data. Take
notes on what you learn. Add in brief descriptions of the key
variables.

2. Download the data cleaning script and save it in the source folder
of your new project directory as 02_data_cleaning.R.

3. Download the data analysis script and save it in the source folder
of your new project directory as 03_data_analysis.R.

4. Download the data visualization script and save it in the source
folder of your new project directory as
04_data_visualization.R.

5. Open your final_report.Rmd document and source each of the
scripts. Add comments to explain the document! 35 / 42

file:///Users/JWROBE8/Library/Mobile%20Documents/com~apple~CloudDocs/Documents/websites/reproducible_research/slides/scripts/02_data_cleaning.R
file:///Users/JWROBE8/Library/Mobile%20Documents/com~apple~CloudDocs/Documents/websites/reproducible_research/slides/scripts/03_data_analysis.R
file:///Users/JWROBE8/Library/Mobile%20Documents/com~apple~CloudDocs/Documents/websites/reproducible_research/slides/scripts/04_data_visualization.R

Pulling it all together

Knitting final_report.Rmd will ensure that if one step of the data
analysis gets updated, it will be carried through the rest of the
pipeline.

Critical for reproducibility because a common error is to edit one
piece of the code but not have changes follow through to the end
of analysis

make: an alternative option, a command-line tool that automatically
builds and compiles code by following instructions in a Makefile.

36 / 42

Parameterized reports

So far we have focused on analysis of counties in Georgia. What if we
wanted to reproduce this analysis for any state in the US?

Parameterized reports in R markdown allow you to create a report
template that can be reused across multiple similar scenarios.
Examples include:

Running a report that covers a specific time period

Showing results for a specific geographic location

37 / 42

Declaring parameters

Parameters are specified using the params field within the YAML
header of the R Markdown document. We can specify one or more
parameters with each item on a new line:

title: My Document
output: html_document
params:
 year: 2024
 state: "ga"
 printcode: TRUE

It's worth noting that all standard R types that can be parsed by
yaml::yaml.load() can be included as parameters, including
character, numeric, integer, and logical types.

38 / 42

Using parameters

You can access the parameters within the knitting environment and
the R console

The values are contained within a list called params:

params$year

params$state

Parameters can also be used to control the behavior of knitr:

39 / 42

Knitting with parameters

There are a few ways in which a parameterized report can be knitted:

1. Using the knit button in R Studio. The default values listed in the
YAML will be used.

2. rmarkdown::render() with the params argument. Allows you to
override the default values listed in the YAML.

rmarkdown::render("MyDocument.Rmd", params = list(
 year = 2022,
 state = "nj",
 printcode = FALSE,
))

You don't have to explicitly state all parameters in the params
argument. Any parameters not specified will default to the values in
the YAML header.

40 / 42

Rendering parameterized reports

You can even integrate these into a function that can be used to
create an output file with a different filename for each combination of
parameters!

render_report = function(state, year) {
 rmarkdown::render(
 "MyDocument.Rmd", params = list(
 region = region,
 year = year
),
 output_file = paste0("Report-", region, "-", year, ".html")
)
}

41 / 42

Try it: parameterized reports

In groups, try Exercises 1 and 2.

42 / 42

