
Using the command line

Hitchhiker’s Guide to Reproducible Research
Julia Wrobel and David Benkeser

 Course Website

https://bit.ly/sismid_hitchhikers

Operating systems

Windows

Not always programmer friendly

Mac OSX

Better for programming

Under the hood, is just Unix

Unix-based OS (Linux, Solaris, etc...)

Best for programming

We'll learn to interact with our computer like it's a Unix OS.

Best practices for programming

Needed for AWS and Docker (later)

2 / 26

Some terminology

Shell

user interface for interacting with a computer

the "outermost" layer of the operating system

Graphical user interface (GUI)

visual interface (icons, menus, etc...) for interacting with computer

"Point-and-click"

Command line interface (CLI)

text-based interface for interacting with computer

e.g., bash, sh, tcsh, zsh, ...

3 / 26

Some terminology

Shell script

plain text file designed to be run by the shell

Terminal

"terminal emulator"

a program that lets you interact with the shell

Why use a terminal?

work faster and more efficiently: no mouse or touchpad!

better debugging when you break stuff (i.e. Git/GitHub)

impress your friends and family?

reproducibility!!!!

4 / 26

Terminal

If Windows, use Ubuntu for Windows

Or other Linux distribution (e.g., Debian)

Biggest difference is how software installed

If Mac, use Terminal

Or iTerm2 -- more features

If Linux, whatever terminal emulator comes with your distribution.

5 / 26

https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/debian/9msvkqc78pk6?rtc=1&activetab=pivot:overviewtab
https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://www.iterm2.com/features.html

Terminal

Your open terminal will look something like this:

You'll see a prompt, which is an alphanumeric string that (usually)
ends in $. Commands are typed after the $. 6 / 26

Using the terminal through RStudio

You can also use the terminal directly in Rstudio!

Rstudio introduced the terminal tab in 2017

For our course, this may be the simplest approach

Display the Terminal tab: If the tab isn't visible, you can display it by
going to Tools > Terminal > Move Focus to Terminal.

Can also use the keyboard shortcut Shift+Alt+M or Shift+Option+M
on Mac.

7 / 26

RStudio terminal

8 / 26

Working directories

What is a working directory?

9 / 26

Moving around directories

Folders within you computer are called directories. You can navigate
around to different directories, remove or create directories, remove
or create files, move files around, and list their contents all from the
terminal.

These next sections may seem fairly basic but these are also the
commands I use the most often, so I'm going to spend some time on
them.

10 / 26

Moving around directories

Command Action

pwd print working directory

cd change directory

ls list files in directory

cd: Takes you to the home directory

cd ..: Moves up one directory

cd ../..: Moves up two directories

ls -a: list hidden files as well as other files

Hidden files are often part of the instructions for the OS or a
particular application

Usually invisible when searching through folders

Examples: .git, .gitignore, .Rhistory
11 / 26

Absolute paths

/Users/juliawrobel

~/Documents

/

Relative paths

./Documents

../Documents

../../

Absolute vs. relative file paths

Absolute paths include the whole path for a directory

Relative paths depend on the working directory that they are
executed in

The ./ means "in the current directory"

The ../ means "in one directory up from the current
directory".

12 / 26

Adding/removing files

Command Action

mkdir make a new directory

rm delete a file or directory

mv move a file or directory

cp copy a file or directory

13 / 26

Structure of a bash command

command [options] [arguments]

1. command: the bash function you want to run, e.g. ls, cd, echo, etc.

2. options: also called "flags", these are additional parameters to
modify the behavior of the command, e.g.,

ls -R lists all directories and contents recursively

ls -aR recursively lists all files and hidden files

3. arguments: inputs to the command, such as file names or other
data that tell the command what to operate on

rm what? cp what?

ls \Documents lists all files in the documents folder

14 / 26

bash help files

To see available options check man command.

15 / 26

Solving computing problems

man [command]

Google (with site:stackoverflow.com?)

ChatGPT

Ask friends/classmates

Try stuff!

Breakout exercises are designed to force you to try new things.

Learning how to learn!

16 / 26

Try it out!

Open the terminal and perform the following tasks:

1. What is your current working directory?
2. In your current directory, make a directory named tmp
3. Navigate into this new folder called tmp
4. Add an empty file named tmp_file
5. Within tmp, add an empty directory named another_tmp
6. Within another_tmp, add an additional empty file named
another_tmp_file

Hint: if you need some help, check out the solutions under Exercise
1.

17 / 26

Group exercise

Next, get into breakout groups and perform the following tasks:

1. list all files with sizes displayed in bytes/kilobyes/megabytes
2. remove tmp_file
3. rename another_tmp_file to such_a_cool_file
4. remove tmp directory and all its contents

18 / 26

Redirects and pipes

Command Action

> redirect output to file

>> redirect output and append to file

< have input come from a file

| output of command becomes input of next

Piping and redirects give you flexibility in coding.

19 / 26

To bash or not to bash

download hamlet text from web and save
in file called hamlet.txt
curl -L http://bit.ly/hamlet_txt > hamlet.txt

lines the string "Ham" mentioned
grep "Ham" hamlet.txt

lines with "Oph" and "Ham"
grep "Ham" hamlet.txt | grep "Oph"

count Hamlet's lines
grep "Ham\." hamlet.txt | wc -l

see the start of Hamlet's first 5 lines
grep "Ham\." hamlet.txt | head -5

see the start of Hamlet's last line
grep "Ham\." hamlet.txt | tail -1

20 / 26

Wild cards

Command Action

* match anything

?, ??, ... match a single character

[...] match a range of characters

files in cwd with .txt extension
ls -l *.txt
all files in cwd named a_file with three character extension
ls a_file.???
.txt files in cwd name a_file, b_file, ..., e_file
ls [a-e]_file.txt

21 / 26

Useful command line shortcuts

Key stroke Action

↑ move to previous command

↓ move to next command

tab autocomplete command or file

ctrl+c cancel (running) command

ctrl+z suspend command

ctrl+r search for command in history

ctrl+l clear the screen

22 / 26

File permissions

If you run ls -l, the far left column shows file permissions:

e.g., -rw-r--r-- or drwxr-xr-x

First character is file type. Then comes read (r), write (w), and execute
(x) permissions for user, group, others.

Executing +x (essentially) makes the file executable for everyone.

See slide notes for more options for chmod.

23 / 26

Vim

Vim is a minimalistic text editor that is built into Unix and is often the
default text editor within the terminal.

Key Features:

1. Modal Editing:

Normal Mode: Navigate and manipulate text.

Insert Mode: Insert and edit text.

Visual Mode: Select and highlight text.

2. Commands

Performs complex text manipulations with minimal keystrokes.

Examples: dd (delete line), yy (yank/copy line), p (paste).

24 / 26

Basic vim commands

Opening and exiting vim

vim filename: open a file in vim

:w: save changes

:q: quit vim

:wq: save changes and quit

Navigating in vim

h, j, k, l: move left, down, up, and right

gg: go to the beginning of the file

G: go to the end of the file

Editing text

i: enter Insert mode before the cursor

a: enter Insert mode after the cursor 25 / 26

Group exercise

In your breakout group, write bash code that executes each of the
following.

1. Write a sentence or two about Atlanta, or anything you'd like, and
store it in a file called "atlanta.txt" within a folder called "atlanta".

2. Use vim to edit this file in some way (e.g. add some more text).
3. Save the results and exit vim.

26 / 26

