
Statistical Analysis of Multiplex Immunofluorescence and Immunohistochemistry Imaging Data 
 
Julia Wrobel1*, Coleman Harris2, Simon Vandekar2 

 

1Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, 

CO 80045, USA 

2Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA 

 

*Corresponding Author 

Julia Wrobel 

13001 E 17th St   

Aurora, CO USA 80045 

julia.wrobel@cuanschutz.org 

 

  



Abstract  
 
 Advances in multiplexed single-cell immunofluorescence (mIF) and multiplex immunohistrochemistry 
(mIHC) imaging technology have enabled analysis of cell-to-cell spatial relationships that promise to 
revolutionize our understanding of tissue-based diseases and autoimmune disorders. Multiplex images are 
collected as multichannel TIFF files, then must be de-noised, segmented to identify cells and nuclei, 
normalized across slides and protein markers to correct for batch effects, phenotype, then tissue 
composition and spatial context at the cellular level is analyzed. This chapter discusses methods and 
software infrastructure for image processing and statistical analysis of mIF/mIHC data. 
 
Key Words: multiplex imaging, bioimage analysis, spatial statistics, cell phenotyping, image 
normalization  
 
1. Introduction  
 
The development of multiplexed immunofluorescence (mIF) and multiplex immunohistochemistry 

(mIHC) imaging has revolutionized researchers’ ability to study tissue structure and function at a cellular 

level while preserving the original spatial context of the sample. Functionally, mIF/mIHC is a hybrid 

between multiplex single-cell techniques like flow and mass cytometry [1, 2], which allow for staining of 

multiple antibody markers but require the dissolution of tissue in a suspended solution, and traditional 

immunohistochemistry, which preserves the original tissue structure but staining is limited to 2-3 

antibodies [3]. Along with similar single cell imaging technologies, including multiplexed ion beam 

imaging (MIBI) [4, 5], and imaging mass cytometry (IMC) [6, 7], mIF platforms have particular promise 

in the field of cancer immunology, where they have been used to characterize the tumor immune 

microenvironment (TIME). This chapter surveys statistical methods for preprocessing and analysis of 

mIF data using examples motivated by scientific questions about the TIME. Specifically, the study of 

abundance, spatial location, and protein expression of immune cells in and around tumors and how 

immune profiling relates to improved prognosis for cancer patients. However, the methods highlighted 

can be directly applied or adapted for mIF data from many other research areas; recent mIF advances in 

non-cancer domains include the study of neurodegenerative diseases [8, 9], type 1 diabetes [10], 

inflammatory bowel disease [11], and multiple sclerosis [12]. 

The collection of mIF data follows a complex data acquisition, image processing, and analysis 

pipeline depicted at a high level in Figure 1. First, tissue is placed on a slide. An advantage of mIF 



imaging is that it can be applied to regions of interest (ROIs) of a whole tissue slide, or to tissue 

microarrays (TMAs), allowing for analysis across large tissue areas or a large number of samples [13]. 

The slide is then stained with multiple, or multiplex, primary antibodies, referred to as markers, that attach 

to biomarkers of interest. Markers can be broadly categorized as either phenotypic markers, which are 

used to categorize cell type, or functional markers that inform cell function and can be present across 

multiple cell types. The marker antibodies are attached to fluorophores, which emit light at specific 

wavelengths when imaged, and the signal of light intensity at a particular wavelength is used to quantify 

biomarker abundance. Then intensity spectra must be unmixed to give separate intensity values for each 

marker. Resulting images are stored as multichannel tiff files where each channel provides the tissue 

intensities for a particular marker. 

These images are then segmented to identify tissue compartments (e.g. tumor vs. stroma), cells, 

and nuclei. Single-cell segmentation is an important and rapidly advancing area of research that benefits 

from recent success in neural networks and deep learning. Many algorithms have been developed as part 

of proprietary software packages such as Inform and HALO, but are also being developed by academic 

research groups [14–16]. These algorithms are often tissue specific, can be influenced by the image 

production process, so sometimes must be retrained for new data. Research in this area works to make the 

algorithms more general and reduce bias. Because research in single-cell segmentation is broad in itself, 

the topic is not discussed further in this chapter. 

After segmentation, cells are phenotyped, or given biological label(s) based on their mean marker 

intensities. Segmentation and phenotyping converts images into a tabular dataset where each row is a cell 

and columns are features identifying cell spatial location, tissue type, phenotype, marker intensities, and 

other cell or image characteristics. Finally, the datasets are analyzed, potentially in combination with 

patient level outcomes such as survival time, disease subtype, or cancer stage. While examples in this 

chapter focus cell-level data, the images can also be analyzed directly using the same methodology, using 

pixels rather than cells as the unit of observation. In our more detailed discussion below, we focus on 



steps of the mIF/mIHC pipeline downstream of image acquisition that can be applied and improved upon 

by statisticians and bioinformaticians. 

 
2. Ovarian and lung cancer datasets 
 

With 184,000 deaths per year, globally, ovarian cancer is the most lethal reproductive cancer 

[17]. In addition, 75% of patients with high-grade serous ovarian cancer have tumor recurrence and 

develop therapy resistant disease [18].  Lung cancer is even more deadly, making up 25% of all cancer 

deaths [19].  There is mounting evidence of the prognostic significance of the tumor-immune composition 

in lung and ovarian cancers [20, 21]. However, the biological significance of spatial relationships between 

cell types in the TIME of these cancers is not yet well understood, and mIF imaging may provide key 

scientific insights. To address gaps in understanding of the biology of these cancers, a high-grade serous 

ovarian cancer (HGSOC) and a non-small cell lung carcinoma (NSCLC) mIHC dataset were collected at 

the University of Colorado Anschutz Medical Campus, and will be used to illustrate the methods in this 

chapter. 

Images were collected on Vectra 3.0TM and Vectra PolarisTM instruments for the ovarian and lung 

datasets, respectively, and image processing was performed using InForm software [22–25]. The Vectra 

3.0TM and Vectra PolarisTM  by Akoya Biosciences are currently the most widely used mIF/mIHC 

platforms, and InForm is accompanying proprietary software that provides a graphical user interface 

(GUI) for image processing steps including spectral unmixing, segmentation, and phenotyping. For our 

lung and ovarian datasets, InForm was used for spectral unmixing, nucleus, cell, and tissue segmentation, 

and cell phenotyping; however, it is also common to use a mixture of Inform and other GUI-based 

software such as HALO and QuPATH to convert images into tabular datasets [26]. Both datasets are 

freely available in R in a tabular post-segmentation format as part of the Bioconductor ExperimentHub 

package VectraPolarisData [27]. Specifically, these data are stored as SpatialExperiment class objects[28] 

and code used to reproduce figures in this chapter using these data is available at https://github.com/julia-



wrobel/mIF_chapter_code.  Each dataset provides cell spatial locations and marker channel intensities for 

over 1.5 million cells in each dataset, as well as patient-level clinical information. 

The HGSOC ovarian dataset comes from a spatial analysis of a tumor microarray of 128 subjects 

with ovarian cancer collected at the University of Colorado [29] and contains one image per subject. 

Images were stained for DAPI, five phenotypic markers (CD3, CD8, CD68,  CD19, cytokeratin), and two 

functional markers (phospho-stat3 and IER3), allowing for identification of CD4+, CD8+, CD68+, and 

CD19+ immune cells. Patient-level variables include age, cancer stage at diagnosis, BRCA mutation 

status, debulking status, survival time, survival status, and time-to-recurrence.  

The NSCLC lung data was collected to analyze the relationship between tumor-infiltrating 

immune cells and major histocompatibility II expressing cancer cells in the NSCLC tumor immune 

microenvironment, and consists of 761 mIF-imaged regions of interest (ROIs) from 153 patients [30]. 

Images were stained for DAPI, five phenotypic markers (CD3, CD8, CD14, CD19, cytokeratin) and one 

functional marker (MHCII), allowing for identification of CD4+, CD8+, CD14+, and CD19+ immune 

cells. Patient-level variables include age, gender, cancer stage at diagnosis, pack-years of cigarette 

smoking, survival time, survival status, and time-to-recurrence. Because each sample consist of multiple 

ROIs that are not spatially adjacent, these images cannot be stitched together and treated as one image. 

Instead, repeated measures approaches must be considered when analyzing image data in models for 

patient level outcomes. Figure 2 (far left) shows an example image from this dataset which combines 

intensities from all 8 channels. The three right columns are the DAPI, cytokeratin, and CD8 channels for 

this image, respectively; these are used to identify cell nuclei, tumor areas, and CD8 T cells. 

 
3. Methods  
 
Multiplex images are typically provided as multichannel tiff files and transformed into tabular sets after a 

cell segmentation step. In the following sections we direct our focus towards analyzing the cell-level 

tabular data after single-cell segmentation. These methods applied at the cell level can also be applied to 

pixels of a non-tabular mIF image directly, but at a greater computational cost. We divide our review of 



methods in the following subsections that address different areas of the processing pipeline depicted in 

Figure 1. In Section 3.1 we cover marker channel processing steps that must be addressed before data is 

appropriate for answering questions pertaining to scientific hypotheses. In Section 3.2 we cover methods 

for cell phenotyping, the process of classifying cell types. In Section 3.3 we discuss analysis of image 

summary data using statistics that capture the cellular composition of tissue samples. An increasing focus 

of the literature on mIF data is dedicated to spatial analysis, and in Section 3.4 we detail existing methods; 

in particular we emphasize approaches grounded in point process theory because this is an area of mIF 

where we believe expertise from statisticians and bioinformaticians can have greatest impact. In Section 

3.5 we conclude with a review of available open-source software tools for the visualization, 

preprocessing, and analysis of multiplex imaging data. 

 
3.1: Image Transformation, Normalization, and Batch Correction 
 
Image transformation, normalization, and batch correction are, in general, used to make the data more 

appropriate for downstream analysis by adjusting intensity distributions or removing systematic biases 

due to processing variables. Image transformations (e.g. log, arcsinh, or root) are used to make the data 

more amenable to modeling, but do not explicitly adjust for systematic effects due to image acquisition 

variables. Image normalization is the process of making the same tissue type appear similar in images that 

were acquired across different sites, times, imaging parameters, or platforms [31–35]. Normalization 

adjusts the distribution of marker intensities in each slide, batch, channel, or image separately to make the 

distributions appear more similar. Batch correction (often called harmonization in the imaging literature) 

is the process of removing systematic effects in groups of cells or images that are due to processing steps 

or other non-biological sources [36]. Batch correction methods use a single model across slides to account 

for covariates while estimating and removing batch effects across slides. Transformation, normalization, 

and batch correction methods are applied to each channel of the mIF data, so it is important to have 

procedures that are effective for a wide range of different marker types, including both phenotypic 

markers and functional markers. The top two rows of Figure 3 show evidence of potential batch effects in 



the NSCLC data. In this figure, distributions of unnormalized marker intensities are shown for three 

subjects and two immune cell markers (CD14 and CD19). Each subject has densities plotted for multiple 

ROIs (dotted lines) as well as the subject-specific mean density (solid lines). For this dataset each slide 

contains data for a single subject, and the range of intensity values differ substantially for each slide. 

Normalization and batch correction algorithms can be applied at the image or cell level [37]. The 

goals of the two procedures are methodologically similar and batch correction methods from genomics 

have been very effectively applied in imaging datasets [34, 38, 39]. There is an emerging literature on 

batch correction in mIF data [31, 32, 34, 37, 40, 41], and this research area is likely to grow as the effects 

of imaging parameters and platforms are better understood. It is well-accepted that there are effects of 

slide, staining round, and batch on the distribution of mIF intensities at the image and cell level. mIF data 

are unique from magnetic resonance imaging (where batch correction is being widely applied) because 

the tissue populations differ significantly in their composition across samples, so close alignment of the 

image histograms is not always an indication of effective normalization (Figure 2 top rows). Batch 

adjustment methods developed for other genomic assays, such as sc-RNAseq are promising, but cannot be 

directly applied due to greater overlap in the distributions of expressed and unexpressed cells. For these 

reasons, mIF normalization and batch correction is a rapidly growing area of research. Here, we provide a 

brief overview of recently proposed methods and software for normalization and batch correction in mIF 

data. 

 
Image Normalization 

Raza et al. were one of the earliest groups to explore normalization methods for mIF data applied 

at the image level [31]. They compared a linear normalization, 
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where 𝐼!"(𝑝) denotes the image value for pixel 𝑝 of slide 𝑖 and channel 𝑐, and 𝐼"!"(𝑝) denotes the 

normalized data; and a tanh transformation after applying mean division normalization, 
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where 𝐼0"0  is the slide mean. The methods were evaluated based on expert ranking in consistency between 

tissue compartments across images and KL-divergence within and between tissue classes. Linear 

normalization almost always scored better across their evaluation procedures. 

Graf et al. proposed several quantile based normalization methods and applied the methods at the 

pixel and segmented cell levels of analysis. They compared linear 

𝐼"!"(𝑝) = 𝐼!"(𝑝) 	+ 	𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐼!(𝑝)) − 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐼!"(𝑝))	 

and multiplicative normalizations 
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where 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐼"(𝑝)) is the quantile across all images and 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐼!"(𝑝)) is the quantile in slide 𝑖 

only. They considered the median for the linear transformations and the median and 75 quantile for the 

multiplicative normalization as well as several other quantile based normalizations (see Table 1 of [37]). 

They used a novel approach to evaluate normalization by leveraging the DAPI channel,  which was 

repeatedly stained through multiple rounds and serves as a “virtual” ground truth because it marks the 

nucleus and should be identical across staining rounds. Acquisition parameters were varied through the 

rounds, but the same tissues were used, so that they could assume (in the absence of batch effects) the 

tissue should have consistent image intensity through the rounds of staining. Their normalization 

procedure and methods assumed control regions that are expected to be consistent across the staining 

rounds and they used coefficient of variation to quantify batch effects. The authors found that the 

multiplicative normalization applied on log transformed data had the best performance (lowest coefficient 

of variation). 

Other normalization methods have relied on control regions for estimation [32] or evaluation [40] 

of batch effects. These assume adjacent control sections are used across slides and that alignment of these 

control regions implies alignment of the tissue of interest. These are not possible if a good control region 

is used and may not be effective if sections of the control tissue are not adjacent sections. In general, prior 



to transforming the data normalization by dividing by the mean, quantile/median, or range of the data 

seems to work, but more evaluation across a greater range of data sets is merited. 

 
Batch correction 

Harris et al. compared several normalization batch correction methods to adjust for slide effects 

in mIF data at the cell-level [34]. They compared an adaptation of the widely used ComBat method [36, 

38], and a functional data registration method to perform histogram  matching across slides [34, 42] as 

well as several transformations and a mean division normalization. To assess the methods in the absence 

of a ground truth, they established a framework for evaluating batch effects for mIF data, that includes a) 

quantification of misalignment of the expression histograms for each marker channel b) quantification of 

discordance between slide-level phenotyping (no batch effects present) to across slide phenotyping (batch 

effects may be present) before and after normalization c) Quantification of proportion of variance due to 

slide d) visualization of batch and biological effects in UMAP embedding. Across these metrics, applying 

mean division, mean division with a log transformation, and using functional data registration all 

performed well. The authors recommended mean division and mean division with log transformation as a 

balance between efficacy and simplicity. 

 
Future research and software development 

Based on the current research, normalization is demonstrated to be reliable and effective, 

however the simplistic procedures currently used are unlikely to remain as the top performers as we learn 

more about sources of systematic variation in mIF data and more public data sets are released that can be 

used for evaluation [43, 44]. Future directions may more rigorously consider batch adjustment methods. 

For example, ComBat has been demonstrated to fail in mIF data due to zero inflation [34], but a recently 

developed method using a negative binomial model may hold more promise [45]. In addition, the 

normalization methods used currently are robust across channels, but do not explicitly leverage 

information about the joint distribution across channels, the staining round, or the spatial information 

available in the image. These features may be used to better understand and quantify systematic effects in 

mIF. 



Software designed for other assays (e.g. Seurat, Giotto) can be used for mIF normalization or 

batch correction. In addition, most of the recently proposed normalization procedures provide code to 

implement their methods [37, 40, 41]. In particular, mxnorm is a recently published R package devoted to 

normalization of cell-level mIF data [41]. This package provides the normalization and batch correction 

algorithms used in [34] and also allows users to specify new algorithms which can be compared using the 

authors’ proposed evaluation framework. The third row of Figure 3 shows plots of discordance scores of 

phenotypic marker channels for 15 subjects in the NSCLC data before and after normalization. Simple 

log10 and mean division transform-based normalization was applied using the mxnorm package. The 

discordance score is a novel evaluation metric proposed by [34] that quantifies the difference between 

threshold-based phenotyping at the slide and population level. Smaller discordance scores indicate a 

reduction in batch effects, and smaller discordance is seen for the normalized as compared to the raw 

marker intensity values. 

 
3.2: Cell Phenotyping 
 
Cell phenotyping is the process of identifying discrete cell types from marker expression values.  

Phenotyping can use unsupervised algorithms, but often requires expert intervention to label and validate 

cell annotations. This step in the analysis pipeline is not exclusive to mIF and has been well studied in 

other fields, including flow and mass cytometry[46, 47]. Typical preprocessing before phenotyping for 

other assays includes batch correction, transformation, (e.g. log or arcsinh) Z-scaling, and dimension 

reduction. These steps have not been rigorously evaluated in mIF data. For example, dimension reduction 

may not be necessary due to the relatively small number of image marker channels (10s as opposed to 

100s), but data whitening may be beneficial. Here, we provide a brief overview of the approaches used 

and proposed for cell phenotyping mIF data. These include marker gating, and unsupervised or 

semisupervised clustering methods. 

 
Marker Gating 



Marker gating is a widely used procedure of determining a threshold to define marker positive 

cells that have expression values above the given threshold [32, 43, 48]. This procedure is performed 

manually by visualizing univariate or bivariate histograms of cell expression values and image overlays to 

determine a threshold that separates modes in the data. If three or more channels are necessary to 

determine cell phenotypes, marker gating can be performed iteratively for each channel or pairs of 

channels [49–51]. Software with features for performing marker gating of mIF data include Cellprofiler 

Analyst [50, 51], histoCAT [52], CyLinter [53], and Advanced Cell Classifier [54]. Marker gating is 

useful for phenotyping cells of known type that can be identified based on a subset of known marker 

channels. Otherwise, unsupervised algorithms are more convenient for identifying known and unknown 

cell classes. 

 
Unsupervised clustering algorithms 

K-means, Louvain, and Leiden algorithms are unsupervised clustering/community detection 

algorithms that have been widely implemented for single cell assays because they are computationally 

efficient in large data sets [55–58] and are included in most software programs for single-cell analysis, 

such as Seurat, Giotto, and Phenograph [15, 57, 59, 60]. After clustering, manual annotations are assigned 

for each cluster by visualizing the clusters in a dimension reduced projection (e.g. UMAP, tSNE), 

visualizing the cluster memberships on the slides, and visualizing expression profiles (Figure 4). K-means 

is a distance-based clustering; in contrast, Louvain and Leiden clustering are popular graph-based 

clustering methods that group cells based on the similarity of the cells in a local neighborhood, where the 

neighborhoods are determined by the similarity of the marker expression values.  

Figure 4 shows clustering results applied to five ROIs from one subject in the NSCLC dataset. 

TSNE was first applied to the raw marker values to reduce dimensions for visualization purposes. The 

cells for this subject were plotted along the first two TSNE directions and colored by phenotypes 

calculated using Inform software (left), colored by clusters produced by applying Phenograph to 

unnormalized marker intensities (center) and colored by clusters produced by applying Phenograph to 

log10 mean division normalized marker intensities (right).  Phenograph produced 17 and 14 clusters for 



the unnormalized and normalized data respectively, more than are identifiable by the markers collected in 

the dataset. However, many map on to clusters labeled in Inform.  

These clustering algorithms were not specifically developed for single-cell analysis and 

adaptations have been developed to address characteristic features of single-cell data such as the 

dimensionality and rare cell types. For example, RaceID uses outlier detection to revise K-means cluster 

identities because K-means clustering tends to form clusters of similar sizes, so rare cell types are often 

mixed with discrete cell types [61]. In addition, methodological and computational modifications to the 

analysis process have been developed to speed computation in large data sets (> 1 million cells) [57, 62–

64]. Two examples are Phenograph and FastPG for clustering cells that are scalable to large datasets [57, 

62]. Both make modifications to the k-nearest neighbors computation, weighting estimation, and 

computational processing of the Louvain algorithm to improve processing speed. Many of the clustering 

methods mentioned here have been evaluated in single-cell RNA sequencing [46, 47], but these 

algorithms have not been rigorously evaluated in mIF data. Software tools specifically designed for mIF 

or other spatial assays may include the above mentioned phenotyping algorithms [59, 65], however it is 

likely that the phenotyping pipelines for other single-cell assays are not directly applicable here, given 

differences in acquisition and processing [66]. 

Recently, several phenotyping algorithms have been proposed specifically for microscopy data 

that can be applied to mIF data at the cell or image-pixel level. Astir is a cell-level scalable 

semisupervised phenotyping algorithm using a probabilistic model and variational inference with neural 

network that was specifically designed for mIF data. As input, Astir takes the mIF expression matrix and 

a user-specified marker file which defines combinations of marker values attributed to each cell type. 

Astir can be used to broadly classify cells before applying unsupervised clustering on the subpopulations 

or to identify known cell types automatically. Cell phenotyping has been performed using morphological 

summary features in addition to median image intensities within each cell to perform unsupervised 

clustering [14, 67]. These methods still rely on single-cell segmentation as a preprocessing step but use 

spatial information through cell shape, size, composition, and texture. When single-cell segmentation is 



difficult, then phenotyping can be applied directly to the images in order to identify tissue classes or 

neighborhoods in mIF analysis that are spatially contiguous [67–72]. Some of these methods, which have 

been developed in other similar fields, such as imaging mass spectrometry,  will likely be useful in tissue 

where cell segmentation is difficult. After defining neighborhoods they can be used to study spatial 

interactions between these tissue compartments. 

To summarize, phenotyping in mIF data is not well evaluated, but it is possible that algorithms 

effective in other single-cell assays will be useful in mIF data with methodological modifications to the 

phenotyping analysis pipeline.  Quality assessment and visualization tools that allow users to evaluate cell 

phenotypes in situ are critical for evaluation [15, 53]. Given the variability in possible markers, 

unsupervised or semisupervised methods are likely to be most applicable. Finally, mIF data accommodate 

image level clustering, which allows analysts to circumvent single-cell segmentation, which could be 

biased or difficult depending on the tissue type. Cell and image level phenotypes can then be passed to 

downstream spatial analytic methods. 

 
3.3 Analysis of Cellular Composition and Marker Expression 
 
As a first step of probing the tissue microenvironment it is common to analyze the cellular composition of 

the overall sample and tissue sub-compartments. One typical approach is estimating the number, 

percentage, or density of cell subtypes in different tissue regions; for example, summarizing immune cell 

proportions within tumor and stroma regions [73]. It is also common to characterize cell composition 

across levels of a covariate, such as  responders and non-responders to a chemotherapy. Summary 

statistics including percentage or proportion of positive cells for each phenotypic form can be easily 

calculated in image analysis softwares such as Halo and Inform. However, these quantities are not 

normally distributed, even after normality transformations, so modeling choices need to be carefully 

considered [13]. In addition, zero inflation is common in mIF studies where rare cell populations 

contribute to zero cell counts for some subjects or ROIs in a sample. This can occur, for example, in 

studies of immune cold tumors such as ovarian cancer. Figure 5 (left panel) shows empirical proportion of 



total cells that belong to each type of tumor-infiltrating immune cell, including B cells, CD4 T cells, CD8 

T cells, and macrophages, for women in the HGSOC ovarian data with and without a BRCA genetic 

mutation. Note that there is substantial right skew in the distributions of proportions for all immune cell 

subtypes, and zero inflation is present in the proportions of B-cells because many images do not contain 

B-cells. In addition, mIF data often exhibit overdispersion when modeled using common statistical 

methods for counts and proportions. Overdispersion is when the data exhibit greater variance than is 

dictated by the chosen model and can lead to Type I error and artificially narrow p-values. Failing to 

account for non-normality, overdispersion, and zero-inflation can lead to erroneous results. 

 
Modeling counts or proportions with overdispersion and zero inflation 

Count data can be effectively modeled using a generalized linear modeling (GLM) framework 

with a data-informed choice of statistical distribution [74]. A GLM also enables straightforward modeling 

of how summary statistics, such as cell proportions, differ across levels of a covariate (e.g. treatment 

response). The binomial and Poisson distributions are common distributions for modeling proportions; 

however for cell count data from mIF these models will likely be overdispersed and underestimate the 

variance of model parameters, in part because they implicitly treat multiple cells within the same image as 

independent. One way to account for overdispersion is to use heteroskedasticity-robust standard errors, 

which have several standard implementations in R including the sandwich library [75, 76]. Another 

approach is to introduce an additional model parameter that explicitly captures overdispersion, and 

methods that account for overdispersion in counts or proportions in this way include quasi-binomial, 

quasi-Poisson, negative binomial, and beta binomial regression [74]. 

When an excess of zero counts is present, usually due to rare cell types, zero-inflated versions of 

Poisson, beta binomial, or negative binomial count models can be used. Zero-inflated models have two 

parts, for example, zero-inflated Poisson regression models zeros using a binomial distribution 

observations greater than zero using a Poisson distribution. These models have become popular for other 

types of biological data where excess zeros are present, including the microbiome composition [77, 78] 

and RNA-seq data [79–81]. Because mIF data that is zero-inflated is also likely overdispersed, zero-



inflated beta binomial and zero-inflated negative binomial are recommended over zero-inflated Poisson. 

For datasets with multiple tissue samples or ROIs per subject, within-subject correlation induced by 

repeated measures needs to be accounted for, and generalized mixed effects or estimating equation 

models can provide summaries of cellular composition at experiment-wide levels [82, 83]. Generalized 

mixed effects models additionally provide summaries at the subject level, and both frequentist and 

Bayesian implementations of mixed-effect models for overdispersed and zero-inflated count data are 

available  [84–86].  

Figure 5 (right panel) shows results from generalized linear models of proportions of B cells (top) 

and macrophages (bottom), controlling for BRCA mutation status. Specifically, BRCA mutation status β 

coefficient estimates and 95% confidence intervals are shown for six different models. Black stars above 

estimates indicate statistical significance at the 5% ɑ level. The “naive” model applies linear regression to 

empirical proportions that have been square-root transformed, “Poisson robust” and “binomial robust” 

indicate Poisson and binomial regression with robust standard errors, and ZIP indicates zero-inflated 

Poisson regression. The naive model, though it accounts for overdispersion and provides inference about 

model covariates, is otherwise limited because it does not account for the total number of cells in each 

image and cannot be back transformed to obtain estimates of cell counts or proportions. The binomial and 

Poisson models show significant differences by BRCA status for both B cells and macrophages, however 

these results are likely spurious because these models do not account for overdispersion. When robust 

standard errors are used for the binomial and Poisson models, the proportion of B cells or macrophages 

are no longer significantly different across BRCA groups. Zero-inflated Poisson regression was only used 

to model B cell proportions because the HGSOC data did not contain excess zero counts of macrophages. 

While the ZIP coefficient for BRCA is significant in Figure 5, this is also likely due to overdispersion.  

As Figure 5 demonstrates, failing to properly account for overdispersion can lead to artificially 

narrow confidence intervals and spurious p-values. To avoid this pitfall, we recommend using models 

with robust standard errors or others, such as beta binomial, which explicitly model overdispersion. When 

an excess of zeros is present it is instead more appropriate to use a model that accounts for both zero 



inflation and overdispersion, such as zero-inflated beta binomial or zero-inflated negative binomial. If one 

is unsure whether data has enough zeros to constitute “excess”, hypothesis tests can be used to compare 

zero-inflated models with their standard counterpart [87–89]. Finally, when multiple images/ROIs are 

available for each subject, mixed effects versions of these models should be used to account for repeated 

measures.  

 
Analysis of functional markers 

Differences in the distribution and expression of functional markers across cell or patient 

populations is also of interest. Recent examples include whether abundance of PD-L1 positive cells differ 

between responders and non-responders to an immunotherapy in ovarian cancer [90] and whether high or 

low expression of major histocompatibility complex II (MHCII) in tumor cells affects overall survival in 

lung cancer patients [30]. To simplify analysis of functional markers, they are often categorized into 

groups by thresholding continuously measured values. The choice of threshold can be arbitrary; some 

typical approaches include quantile-based groupings, biologically driven cutpoints, and optimal 

thresholds that maximize some test statistic of interest. For quantile based groupings, a median threshold 

is most common. Biologically relevant thresholds are chosen based on evidence from previous studies 

and are often classified at the patient level; for example, defining a patient with estrogen receptor (ER) 

expression on more than 1% of cells as ER+ [91], or a patient with MHCII expression on more than 5% 

of tumor cells as MHCII high [30]. However, biologically relevant thresholds are not always available 

and are sometimes inconsistently applied in the literature across studies and disease types. Finally, 

optimal cutpoints are chosen to maximize a test statistic of interest; for example, choosing high or low 

immune cell groups to assess the ovarian cancer tumor microenvironment in African American women 

[92]. This approach can be appropriate for data exploration and hypothesis generation, but the threshold 

obtained must be evaluated on external datasets to ensure its biological validity and avoid statistical bias 

[93, 94].  Recently, [95] proposed a threshold-free approach that classifies subjects into different 

categories by clustering on Jensen-Shannon distances between marker densities, and may mitigate 

problems that arise when thresholding functional markers. All of these methods will be sensitive to 



upstream marker intensity normalization and phenotyping so it is critical to carefully evaluate earlier 

results in the data processing pipeline. 

While thresholding functional markers is common, categorizing observations from a continuous 

marker may reduce power and has been criticized within statistics [96]. This can be particularly 

problematic when the marker distribution is not bimodal and cannot be easily grouped into unexpressed 

and expressed cell populations. A more reproducible approach is to model marker values continuously, 

possibly accounting for nonlinearities with covariates using splines. 

 
3.4 Spatial Analysis 
 
Previous steps in the mIF data analysis pipeline are necessary for reducing bias due to technical variation, 

extracting interpretable image features like cell locations and cell types, and summarizing experiment-

level characteristics. However, the explosion in popularity of multiplex imaging has mainly been driven 

by the unprecedented ability to study spatial relationships in samples with a large and growing number of 

markers. Many spatial analytic approaches have been adapted from ecology and geostatistics, and new 

spatial analytic methods specifically for multiplex imaging data are rapidly developing [13]. Below we 

discuss different classes of spatial analytic tools and techniques, with a particular focus on methods 

grounded in point process theory. While methods for spatial transcriptomics data may be successfully 

leveraged for mIF data as well, these are reviewed in more detail elsewhere, for example [97]. 

 
Basic tools for data exploration and visualization 

There are several recent software packages for high-level data exploration and visualization. 

Packages like Seurat and Giotto [59, 60] are multiuse toolkits that incorporate dozens of visualization 

methods and spatial metrics. Both of these packages were introduced for single-cell analysis of RNA 

sequencing data, and have evolved to accommodate spatial transcriptomics and multiplex imaging data. 

In contrast, the histoCAT toolbox [52] was introduced specifically to explore and visualize multiplex 

imaging data, and provides interactive visualizations of cell phenotypes and nearest-neighbor analyses. 

Similarly, cytoMAP [98] is a user-friendly comprehensive toolkit for quantitative image analysis of 



multiplexed tissues, and Squidpy [99] is a modular, scalable Python-based platform for spatial single cell 

analysis. Each of these software platforms provides similar features; specifically, a united framework to 

visualize and perform basic spatial analysis of multiplexed imaging data within an interactive graphical 

user interface or programming environment (usually R or Python). A more comprehensive list of software 

tools for multiplex imaging data is provided in Table 1. 

 
Spatial statistical learning models 

A few approaches that have emerged adapt statistical learning procedures to either identify spatial 

gene expression, which is used in spatial transcriptomics data because of the coarser spatial resolution, or 

to identify spatial neighborhoods [69, 100]. These approaches cluster pixels or wells while incorporating 

information about the spatial dependence, e.g. by smoothing or with a Markov random field. The Giotto 

package contains a method by [101] that integrates RNA sequencing data with mIF data using hidden 

Markov random fields. The BayesSpace model [102], which also uses Markov random fields, can be 

applied to spatial transcriptomics data to enhance resolution and cluster the image, and implements a fully 

Bayesian approach. [103] build gene or marker networks using nonnegative matrix factorization. Another 

approach uses spatial latent Dirichlet allocation to discover novel tissue subcompartments [104]. Many of 

these machine learning based techniques for spatial ‘omics are intended for spatial transcriptomics data, 

which have lower spatial resolution than mIF data, but can have  read counts on hundreds or thousands 

of genes. Because of this format, these spatial clustering methods incorporate a dimension reduction step 

in the marker dimension, however, when applied to mIF datasets this dimension reduction may not be 

necessary and these methods may be well adapted for handling the high spatial resolution of mIF data. 

 
Spatial metrics based on point processes 

The most relevant approaches for analyzing spatial relationships between cell types or 

quantifying spatial co-expression of biological markers in multiplex imaging data are based on point 

process theory. The location of cells in mIF data are treated as following a point process, realizations of a 

point process are called “point patterns”, and point process models seek to understand correlations in the 

spatial distributions of cells. Under the assumption that the rate of a cell is constant over an entire region 



of interest a point pattern will exhibit complete spatial randomness (CSR), and it is often of interest to 

model whether cells deviate from CSR either through clustering or repulsion. In marked point process 

theory points, in a point pattern may carry attributes. Example attributes include cell phenotype, cell 

size, or expression of functional marker PDL1, and this auxiliary information is called a “mark” [105]. 

Marks can be qualitative (cell phenotype) or quantitative (expression of a functional marker), and marked 

point processes are particularly useful in the mIF data setting.  

Spatial summary statistics can be calculated to quantify the clustering and co-occurrence of cells 

in a circular region with a particular radius r. Typically univariate (one cell type) or bivariate (two cell 

types) summary statistics are reported, and inference is obtained by comparing the observed spatial 

summary statistic to that obtained under CSR. A popular quantity is Ripley’s K(r), which studies the 

number of neighbors to a particular point within radius r, and has univariate and bivariate 

implementations in the spatstat package [106, 107]. Ripley’s K is characterized by clustering or repulsion 

depending on whether it is above or below the theoretical value of 2𝜋𝑟-. Modifications of Ripley’s K, 

Besag’s L(r) and Marcon’s M(r), are interpreted as clustering or repulsion for values above or below their 

theoretical limits of r and 1, respectively.  K and L increase with increasing radius, while M does not  

[108, 109]. A similar statistic, called the hypothesized interaction distribution measures the co-

localization between immune cells, and authors found that high co-clustering of certain cell types was 

associated with worse survival in oroharyngeal squamous cell carcinoma [110, 111]. A popular paper by 

[5] studying the TME of breast cancer introduced a bivariate adaptation of K(r) that can be interpreted as 

the number of close interactions between marker positive cells in a given region. 

Other spatial summary statistics analyze the distance to a neighbor, and can be interpreted as 

probabilities of observing a particular cell type within a radius r. One of these metrics, G(r), or the nearest 

neighbor distance distribution, is the cumulative distribution function of an exponential random variable 

[105].  Similar quantities include the empty space function F(r), pair correlation function g(r), and radial 

distribution function J(r) [112, 113]. These types of spatial summaries have been used to study 



interactions between T-regulatory cells and tumor cells in NSCLC lung cancer [114], and to study CD68+ 

macrophages in human head and neck tumors [115]. An excellent and more detailed overview of these 

metrics, including a table with mathematical formulations, is provided in [13]. 

Figure 6 shows tumor infiltrating immune cells with their respective Ripley’s K functions for 

three images from the HGSOC dataset. The top row shows TMA cores and cell locations, with immune 

and other cells colored in red and gray, respectively. In the bottom row are Ripley’s K(r) for each image. 

The estimated K(r) is indicated by the black bold line, and the dotted blue lines show theoretical values of 

K(r) under complete spatial randomness. The subject in the first column has K(r) values above the CSR 

line, indicating clustering of tumor infiltrating immune cells; in contrast, the subject in the second column 

has a similar density of cells but the immune cells (in red) are more randomly dispersed, leading to a K(r) 

close to the theoretical value under CSR. 

For multiplex imaging data it can be highly advantageous to incorporate quantitative marker 

intensity values with information about point locations, which can be done using second-order summary 

statistics. At a high level this is typically done by incorporating measures of correlation. Moran’s I is a 

popular global (image-level) measure of spatial autocorrelation which has bivariate and local adaptations 

[116, 117]. Lee’s L is the spatially weighted and smoothed correlation coefficient of two markers [118]. 

Recently [119] introduced a bivariate summary statistic based on the marker conditional mean. The 

pairwise correlation function also incorporates continuous marker information. 

 
Point process adaptations for mIF 

In mIF data a major goal of estimating region level spatial summaries is to perform analyses 

using the above spatial indices as outcome or predictor variables [92, 120–122]. It is critical to obtain 

summary measures that are informative about cell level interactions, but are not sensitive to gross tissue 

level features such as tissue orientation or shape. Many of the well established spatial summary metrics 

have corrections for edge effects, which arise when cells are close to the border of the image and are 

corrected for automatically by functions in the spatstat package [106]. However, this is not sufficient in 

mIF, where estimation issues can arise when the tissue has holes due to the shape of the tissue, folds, or 



tears, resulting in patches of areas on the slide where no cells are present. This can bias the estimation of 

spatial summary statistics, and is common for whole sample mIF data as well as tumor microarrays (see 

Figure 5, third column).  One recent methodological development accounts for regions where no cells 

were present by permuting an empirical value of complete spatial randomness, and then comparing 

observed spatial summary statistic values to that obtained by this empirical null distribution [92]. 

Implementations of this “patch” correction for Ripley’s K and nearest neighbor-based metrics are 

available in the spatialTIME package [120].  In addition, many spatial summary statistics are calculated at 

a particular distance, r, and the selection of this distance can be arbitrary. An alternative to calculating a 

single spatial value for each image is to perform inference using the entire spatial summary function 

evaluated over a range of distances covering the image spatial domain. Functional data analysis 

regression methods, which have been developed to handle functions as predictors and/or outcomes in 

linear models, are well suited for this. The additive functional Cox regression model [123] can be used to 

model spatial summary functions as covariates when the outcome is patient survival or time to disease 

recurrence, and this approach has been taken to study tumor-immune cross correlation functions in mIF 

and MIBI imaging data [122]. 

 
3.5 Software 
 
Many software tools are in active development to assist in analysis of bioimage, spatial transcriptomics, 

and spatial proteomics data.  Halo and Inform are proprietary softwares with a graphical user interface 

(GUI) to allow point-and-click analysis. Most other tools are open source, and primarily available in R or 

Python, though some open-source softwares are GUI-based as well. Some are specialized to address one 

step of the mIF processing pipeline (e.g., normalization) while others can be used for visualization, 

normalization, phenotyping, segmentation, and/or spatial analysis. Existing software packages that can be 

used to analyze multiplex imaging data are highlighted in Table 1. 

 
4. Conclusions 
 



This chapter is a brief overview on steps of the mIF analysis pipeline after single-cell segmentation, 

including normalization and batch correction, cell phenotyping, analysis of cell proportions and 

expression, and spatial analysis. We focused on reviewing these components of the pipeline because we 

believe these are areas where biostatistics can have the greatest impact. There are several areas of 

research that are beyond the scope of this review, but are important to mention. While we focused on 

steps of the pipeline downstream of slide staining and image acquisition, many of the image quality 

issues, in particular batch effects, can be mitigated in the image acquisition process. Some work has 

focused on maximizing reproducibility in the image acquisition process [124]. Secondly, we assumed 

effective single-cell segmentation prior to many of the analyses discussed here, but estimation, bias, and 

variability in single-cell segmentation as well as a survey of current methodologies is, itself, an entire 

literature to review. In addition, there is increasing attention in multimodal analysis, such as integrating 

mIF data with spatial transcriptomics, single-cell RNA-seq, and other ‘omics data types to perform 

patient-level analyses that draw information across these different data types. Finally, the steps of the mIF 

pipeline are modular, and can each be improved upon independently or in parallel; however, it is critical 

to evaluate how these methodological developments influence biological interpretations in downstream 

analysis steps. As long as statistical methods are thoughtfully and carefully applied at each step of the 

analysis pipeline, there is much to be learned from multiplex data and it will be exciting to see what 

discoveries will be made with these new technologies. 

 
Software Information Functionality 
Name Purpose Language Store Viz Norm Seg Ptype Spatial  
VectraPolarisData Example mIF datasets R (Bioc) x      
histoCAT Computational histology topography 

cytometry analysis toolbox. 
MATLAB, 
GUI 

 x x   x 

Squidpy Tool for the analysis and visualization 
of spatial molecular data. 

Python  x  x  x 

Giotto Tools to process, analyze and visualize 
single-cell spatial expression data. 

R, GUI, Python 
depends 

 x x   x 

imcRTools Analysis of imaging mass cytometry 
and other highly multiplexed data. 

R (Bioc) x x    x 

SVCA Computational framework for the 
analysis of spatial molecular data. 

Python, R 
depends 

 x x   x 

SPIAT Data processing, quality control, 
visualization, data analysis tools. 

R x      

spatialTIME Spatial analysis of mIF data R x x    x 



mxnorm Normalization techniques for mIF data R, Python 
depends 

x x x   x 

Seurat Toolkit for QC, analysis, and 
exploration of single-cell ‘omics data. 

R  x x   x 

QuPath Powerful, flexible, extensible platform 
for bioimage analysis. 

GUI, Java  x x x x x 

HALO Platform for quantitative tissue 
analysis in digital pathology. 

Closed source, 
GUI 

 x  x x x 

inForm Visualizing, segmenting, and 
phenotyping images from Vectra 
instruments 

Closed source, 
GUI 

 x  x x  

Cytomapper Visualization of cell-level info 
obtained by multiplexed imaging 
cytometry. 

R (Bioc) 
 x     

CyLinter Quality control software for multiplex 
microscopy. 

Python    x   

CellProfiler 
Analyst 

Interactive data analysis for high-
throughput, image-based experiments. 

Python    x   

Table 1: Software tools for data infrastructure (Store),  visualization (Viz), normalization (Norm), segmentation 
(Seg), phenotyping (Ptype), and spatial analysis (Spatial) of multiplex imaging data.  
 
 
Figure Captions 
 
[Figure 1] 
 
Figure 1: Typical image acquisition, processing, and analysis workflow for mIF/mIHC data.  
 
[Figure 2] 
 
Figure 2: One image from the NSCLC dataset. Left panel is the composite image combining all 8 channels 
collected. Next three images are three individual channels from the same image, shown, from left to right, the 
nucleus (DAPI) channel, the cytokeratin channel, and the CD8 channel. 
 
[Figure 3] 
 
Figure 3: Batch effects and results of normalization for the NSCLC data. Top and middle rows: unnormalized 
marker intensity distributions for the immune cell markers CD14 (top row) and CD19 (middle row). Densities are 
plotted for three randomly selected subjects, each shown in a different color. Each subject has densities plotted for 
multiple ROIs (dotted lines) as well as the subject-specific mean density (solid lines). Differences across subjects 
represent slide-level batch effects.  Bottom row: plots of discordance scores of phenotypic marker channels for 15 
subjects in the NSCLC data before and after normalization. Simple log10 and mean division transform-based 
normalization was applied using the mxnorm package. Smaller discordance score indicates a reduction in batch 
effects. 
 
[Figure 4] 
 
Figure 4: Clustering results applied to five ROIs from one subject in the NSCLC dataset. TSNE was first applied to 
the raw marker values to reduce dimensions for visualization purposes. The cells for this subject were plotted along 
the first two TSNE directions and colored by phenotypes calculated using Inform software (left), colored by clusters 
produced by applying Phenograph to log10 mean division normalized marker intensities (right).  Phenograph 
produced 12 clusters for the normalized data, more than are identifiable by the markers collected in the dataset, 
which must be combined to identify clusters comparable with those obtained by Inform. 
 
[Figure 5] 



 
 

Figure 5: Cell type composition across groups of women in the HGSOC data with (BRCA+) and without (BRCA-) 
a BRCA mutation. Left column shows histograms of proportions of tumor-infiltrating immune cells, including B 
cells, CD4 T cells, CD8 T cells, and macrophages, across subjects in the HGSOC data. Dotted vertical black line is 
drawn through zero. Note that there is substantial right skew in the distributions of proportions, and many images 
have zero B-cells. Right panel shows results from generalized linear models of proportions B cells (top) and 
macrophages (bottom), controlling for BRCA status. Estimates shown are β and 95% confidence intervals for the 
BRCA covariate from each models. Black stars above estimates indicate statistical significance at the 5% ɑ level. 
The “naive” model applies linear regression to empirical proportions that have been square-root transformed, 
“Poisson robust” and “binomial robust” indicate Poisson and binomial regression with robust standard errors, and 
ZIP indicates zero-inflated Poisson regression. The ZIP model was not used to model proportions of macrophages 
because all images contained at least one macrophage. For the ZIP model,  β and 95% confidence intervals are 
reported for the count model. 
 
 
[Figure 6] 
 
Figure 6: Spatial summaries of tumor infiltrating immune cells in three images from the HGSOC ovarian data. Top 
row shows plots of spatial locations of all cells (gray) and tumor infiltrating immune cells (red). Bottom row shows 
each estimated Ripley’s K function K(r) for corresponding images in the top row. Estimated K(r) is shown by black 
bold line, and dotted blue line shows theoretical values of K(r) under complete spatial randomness. The first and 
second columns each show a  subject with representative high or low K values at r = 100. The third column shows 
an image with areas of sparse cell density due to tearing or folding of the TMA tissue. 
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